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Decoding depression by exploring 
the exposome‑genome edge 
amidst COVID‑19 lockdown
Xavier Farré 1,2, Natalia Blay 1,2, Ana Espinosa 3,4,5,6, Gemma Castaño‑Vinyals 3,4,5,6, 
Anna Carreras 1, Judith Garcia‑Aymerich 3,5,6, Elisabeth Cardis 3,4,5,6, Manolis Kogevinas 3,4,5,6, 
Ximena Goldberg 3,4,7,8* & Rafael de Cid 1,2,8*

Risk of depression increased in the general population after the COVID‑19 pandemic outbreak. 
By examining the interplay between genetics and individual environmental exposures during the 
COVID‑19 lockdown, we have been able to gain an insight as to why some individuals are more 
vulnerable to depression, while others are more resilient. This study, conducted on a Spanish cohort 
of 9218 individuals (COVICAT), includes a comprehensive non‑genetic risk analysis, the exposome, 
complemented by a genomics analysis in a subset of 2442 participants. Depression levels were 
evaluated using the Hospital Anxiety and Depression Scale. Together with Polygenic Risk Scores 
(PRS), we introduced a novel score; Poly‑Environmental Risk Scores (PERS) for non‑genetic risks to 
estimate the effect of each cumulative score and gene‑environment interaction. We found significant 
positive associations for  PERSSoc (Social and Household),  PERSLife (Lifestyle and Behaviour), and 
 PERSEnv (Wider Environment and Health) scores across all levels of depression severity, and for 
 PRSB (Broad depression) only for moderate depression (OR 1.2, 95% CI 1.03–1.40). On average OR 
increased 1.2‑fold for  PERSEnv and 1.6‑fold for  PERLife and  PERSoc from mild to severe depression level. 
The complete adjusted model explained 16.9% of the variance. We further observed an interaction 
between  PERSEnv and  PRSB showing a potential mitigating effect. In summary, stressors within the 
social and behavioral domains emerged as the primary drivers of depression risk in this population, 
unveiling a mitigating interaction effect that should be interpreted with caution.

Depressive disorders are a leading cause of healthcare burden and one of the most common mental health 
 conditions1. It has previously been reported that increased risk for depressive disorders, their onset, and main-
tenance is influenced by lifespan environmental stressors such as physical or emotional abuse during childhood, 
which are strongly associated with the risk of developing major depressive disorders (MDD)2. Furthermore, this 
relationship is complex and potentially changed by the co-occurrence of other composite risks such as genetic 
liability and its interaction with some of these environmental stressors, as has been shown for an additive effect 
of the depression PRS and childhood abuse on  depression3. Genetic studies show that the underlying genetic 
architecture of depression is  polygenic4, influenced by many variants across the genome with individually small 
effects. Polygenic risk scores are widely used as a metric for additive genetic liability of a given trait or disease, and 
although polygenic risk scores for diagnosis of depression have shown limited clinical utility, they have proven 
very useful in etiological  research5,6. Each of these individual genetic and non-genetic factors have relatively small 
effects and a combination of them occurring at different points in the lifespan needs to coalesce to ultimately 
shape the  outcome7. This information is key to identify the best preventative and treatment strategies towards 
reducing the burden of depression. Nevertheless, it is unclear how environmental and genetic factors interact 
and the extent to which they contribute to the phenotype.

The phenotypic expression of depressive disorders in the general population ranges largely from mild, com-
mon symptoms to severe manifestations of mental disease. Individuals with subthreshold symptoms of depression 
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are at increased risk of a full diagnosis later in  life8, and studies report a shared genetic liability between severe 
forms of major depressive disorder and milder depressive  symptoms9,10. This perspective aligns with the broader 
understanding of mental health as existing along a continuum, where individuals may experience different levels 
of well-being and illness rather than the view of depression as a simple binary (i.e., either present or absent). 
However, categorical thresholds are used to identify clinically relevant depression and it has been proposed that 
treatment-resistant forms are particularly associated with genetic  susceptibility11. It is possible that the contri-
bution of environmental and psychosocial sources of variability is most relevant when mild common forms of 
depression are considered, but less helpful for treatment strategies aimed at reducing the prevalence of severe 
cases.

The study of non-genetic effects on depression has proven challenging. Exposure to risk factors such as 
financial burden or unhealthy lifestyle are more prevalent among vulnerable groups and are highly  interrelated12, 
which is a methodological limitation in most studies and can lead to bias in the interpretations due to reverse 
causality. The first outbreak of the COVID-19 pandemic and subsequent lockdowns exposed the global popu-
lation to a number of these non-genetic risk factors as the undesirable consequences of mitigation measures, 
providing a unique opportunity to examine the knowledge about these environmental risks, genetic susceptibil-
ity and mental health at population level. Environmental factors during the lockdown were observed to elicit 
differentiated behavioural patterns, as noted by Delgado-Ortiz et al.13. Unexpectedly, these patterns were not 
necessarily categorized as safe or unhealthy, but rather associated to specific vulnerable groups, thereby challeng-
ing the interpretation of individual risks, and perhaps to pointing differences in risk-avoiding attitude. Indeed, 
health shocks influence individual risk  aversion14 and in the COVID-19 context they have been shown to affect 
risk  attitudes15 known to be genetically  determined16.

Here, genetic and non-genetic factors were explored simultaneously through the exposome approach. The 
concept of  exposome17,18 has been referred to as the sum total of all environmental exposures, to represent the vast 
environmental dimension in a similar manner to the hereditary dimension. This includes environmental factors 
such as: local ecosystems, lifestyle choices, social factors, life experiences, and the physical  environment19–21. This 
approach has been used by our group and others in numerous works and in several domains, such as working 
life  health18, chronic  diseases22 or early-life  risk23, however its application remains rare in the field of psychiatric 
 disease24–26 as the majority of the research is focused on individual candidate  exposures27,28.

The objective of this study is to examine the role of the modifiable risk factors of depression using the HADS-
D scale as outcome, in a cross-sectional analysis of a single population, using a population-based cohort during 
the COVID-19 lockdowns. The secondary objective is to study the crosstalk between these factors and genetic 
factors that account for a part of the  heritability4 through the use of polygenic predictors with the aim of gaining 
insights into actionable measures. Here, we generated cumulative poly-environmental risk scores (PERS) from 
socio-economic, lifestyle and wider environmental and health related risks associated with depression during 
the lockdown. We also explored individual genetic risk via polygenic risk scores (PRS) using stringent and broad 
definitions of depression to explore the continuum genetic liability spectrum of depression. Finally, we estimated 
the predictive capacity of the complete model including both PERS and PRS and disaggregated the analyses by 
previous diagnosis of depression using retrospective pre-pandemic data.

While the PRS, which is derived from genome-wide data, takes a hypothesis-free approach and captures a 
broader spectrum of genetic variants across the genome, it is important to recognize the inherent hypothesis-
driven nature of the PERS. Despite the comprehensive assessment of environmental stressors in the COVICAT 
study, those included in the PERS are based on prior evidence. However, our approach may overlook other 
stressors not considered in the assessment, which leaves room for unaccounted factors influencing the phenotype.

Examining the interplay between genetics and the exposome during the lockdown will help gain a better 
understanding of why some individuals are more vulnerable to depression, while other are more resilient. This 
knowledge can inform the development of targeted interventions, support systems and public health strategies 
to help individuals cope with the challenges posed by lockdowns and reduce the burden of depression.

Methods and materials
Subjects
All subjects belong to the COVICAT study (COVID-19 cohort in Catalonia). This is a prospective epidemio-
logical study that aims to describe the health impact of the COVID-19 pandemic on the adult population in 
 Spain29–31. The COVICAT study includes participants from six different pre-existing ongoing population-based 
cohorts in Catalonia established before the outbreak and developed following the COVID-19 pandemic. The larg-
est proportion of the participants (88%) were sourced from the GCAT|Genomes for Life Study; the GCAT cohort 
study includes middle-aged participants (40–65 years of age) who are resident in Catalonia, whose recruitment 
started in  201532. All GCAT participants have Electronic Health Records linkage and genotypes are available for 
a subset of participants. For data completeness and homogeneity for this study we retained only those individu-
als sourced from the GCAT cohort.

Briefly, COVICAT harmonized data of all cohorts after the first wave of the COVID-19 pandemic in Spain 
in March 2020 and the majority of participants (99.7%) were contacted between 28 May 2020 and 15 August 
2020. Data collection was primarily completed on a study portal website. Some complementary telephone inter-
views for participants unfamiliar with web-based approaches were conducted (6.1%). All participants provided 
informed consent and ethical approval for the study was obtained from the Parc de Salut Mar Ethics Committee 
(CEIm-PS MAR, no. 2020/9307/I) and the Hospital Universitari Germans Trias i Pujol Ethics Committee (CEI 
no. PI-20-182).

Out of the eligible participants who were contacted 10,862 (61.5%) agreed to participate; of these, 10,087 
(92.9%) participants completed the interview satisfactorily. In the present report we excluded 34 participants 
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who were interviewed in the autumn (between October and November 2020), when new restrictions were 
applied. We also excluded participants with any missing information for pre-pandemic mental health disorder, 
or environmental/lifestyle data (N = 835). Complete records were available for 9,218 participants. Genetic analysis 
was performed in a sub-sample of 2,442 cases (genotyped sample) with complete available genetic information.

Outcome
Depression outcome was assessed by symptoms of depression using the Depression Subscale of the Hospital 
Anxiety and Depression Scale (HADS-D)33. The subscale counts 7 items and ranges between 0 and 21. The sur-
vey’s digitized format forced the users to respond to all items of the scale before submitting, which prevented 
missing items as well as missing scores. To examine the association between exposures (such as genetic factors 
and environmental factors) with depression, we categorized depression in different levels of severity, based on 
informed HADS-D thresholds, as reported in validation studies in Spanish  populations33, defining three outcome 
categories (mild, moderate, severe) as binary variables named: mild depression (HADS-D < 5 vs. HADS-D ≥ 5), 
moderate depression (HADS-D < 8 vs. HADS-D ≥ 8) and severe depression (HADS-D < 11 vs. HADS-D ≥ 11).

To account for the effect of previous diagnosis of depression (and anxiety), available pre-pandemic Electronic 
Health Records (EHR) were analyzed. Lifetime diagnosis and pharmacy dispensation through EHR were com-
bined with self-reported diagnosis. Pre-pandemic cases of anxiety and depression were defined by EHR-ICD-9 
codes (Depression: 296, 311; Anxiety: 300), self-reported diagnosis by survey (i.e. “had you ever been diagnosed 
by a doctor”) and pharmacotherapy by EHR-ATC codes (antidepressants (N06A) and anxiolytics (N05B)) dis-
pensed at least 12 times in the last 10 years (Details in Supplementary Table S1). For this study, a pre-pandemic 
mental health score was calculated by assigning one point for diagnosis (EHR or Self-reported) and one point 
for medication. The score ranged from 0 = no evidence of pre-pandemic mental health disorders, to 2 = individu-
als diagnosed and taking medication for mental health disorders. Only cases with a score of 2 were considered 
positive for pre-pandemic depression/anxiety.

Exposome and the poly‑environmental risk scores (PERS)
The exposome approach was used to capture the cumulative environmental influences after the first wave of the 
COVID-9 pandemic in several domains: lifestyle, social, environmental and health. Briefly, a survey was used 
and data were extracted for risk factors including lifestyle, household, social support and health. Then, envi-
ronmental variables (i.e. exposure to air pollutants and green spaces (including normalized vegetation index 
(NDVI))) were estimated from the participants’ residential addresses using models developed by the ELAPSE 
project and MODIS,  respectively31,34. Finally, cases of COVID-19 were defined by information about a positive 
test for SARS-CoV-2 infection and COVID-19 hospitalization as described  elsewhere30. The exposome selec-
tion included 18 variables: loneliness, interpersonal conflicts in the household, caregiving, living alone, being 
unemployed after the first outbreak, struggling to pay the rent/food, physical activity, alcohol intake, current 
smoker, sleep hours, media exposure, access to outdoor spaces during the lockdown, natural views from the 
household, urbanization, greenness (normalized vegetation index), air pollution (nitrogen dioxide levels), any 
chronic disease, and diagnosis of COVID-19. A full description of the assessment methods and distribution of 
exposure measures are presented in Supplementary Tables S2 and S3.

A high correlation was observed between individual atmospheric pollutants: nitrogen dioxide  (NO2); particu-
late matter with an aerodynamic diameter of less than 2.5 μm  (PM2.5); tropospheric ozone  (O3) and black carbon 
(BC). Similarly, percentage of green spaces within a census tract and 300m, 500m and 1000m buffer were highly 
correlated with the normalized difference vegetation index (NDVI). The variables that measured a very similar 
exposure and with r > 0.8 were considered a group and one variable was included in the analysis as representative 
of the exposure in the  domain35. A final low correlation (r < 0.3) was observed among retained pollutant variables.

Due to the heterogeneity of the exposure variables, we created binary variables for each of the 18 individual 
risk exposures. Binary variables were generated for each individual exposure, where 0 = absence of the risk fac-
tor and 1 = presence of the risk factor. A cut-off of 1 was used for categorical variables. For numerical variables, 
a cut-off was settled using the lowest 25% of the total sample. Descriptions of the binary variables and cut-off is 
presented in Supplementary Table S2. Resulting binary variables were grouped.

We initially used an agnostic approach; thus variables were grouped together without any preconceived 
notions or biases. Correlation measures were used to determine which variables tended to co-vary with each 
other. Hierarchical cluster analysis, using Ward’s method, was used first to cluster variables (see Supplementary 
Fig. S1). Then, to ensure that the resulting categories were consistent with interpretability they were grouped 
into meaningful categories according to previous  observations13,31. Briefly, living alone, which impacts social 
support networks, which are crucial during pandemics when individuals may rely on support from others, was 
grouped with other socioeconomic factors such as caregiving responsibilities, loneliness, interpersonal conflicts, 
unemployment, and struggling to meet basic needs like rent or food. In the behaviour domain access to outdoor 
space was categorized within the behaviour domain along with other factors such as physical activity, alcohol 
intake, smoking, media exposure, and sleep. These behaviours can significantly affect individual health outcomes 
and responses to the pandemic. Access to outdoor spaces in particular may be influenced by individuals’ percep-
tions of COVID-19 risks and their behaviours in response to those perceptions. In the environment domain, 
chronic disease and COVID-19 were grouped within the category with other factors including air pollution, 
built environment or natural views. Together with the high correlation between air pollution, natural views and 
built environment, we have reported an association of air pollution and COVID-19 outcomes, possibly due to 
respiratory health  impact31 and chronic diseases, known for potentially exacerbating the severity of COVID-19 
symptoms further underscoring the interconnectedness of health and environmental factors.
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Finally, to summarize the contribution of selected environmental exposures we generated cumulative scores 
for each domain; the Poly-Environmental Risk Score (PERS). Firstly, all binary exposures were added up to build 
a total PERS including all non-genetic exposure variables  (PERSTotal), then we also generated three sub-categories 
of PERS in three domains to facilitate the interpretability of risks: (1)  PERSSoc for all social and household-related 
factors (sum of loneliness, interpersonal conflicts, caregiving, living alone, being unemployed, struggling to pay 
rent or food), (2)  PERSLife, for lifestyle and behavioural factors (low physical activity, high alcohol intake, current 
smoker, low sleep, high media exposure, low access to outdoor spaces), and (3)  PERSEnv, for wider environment 
and health-related factors (low natural views, high urbanization, low NDVI, high NO2, chronic disease and 
COVID-19 case).

To support validity of built PERS, we conducted a sensitivity analysis using a known group validity test 
examining the association between the three distinct PERS and key variables within our cohort. Employing 
linear regression models, we investigated the relationship between the  PERSSoc score and participants’ educa-
tion levels, the  PERSLife and self-perceived health, and the  PERSEnv score and the deprivation index. Regressions 
were adjusted for sex to account for potential confounding effects. By conducting known group validity tests we 
sought to assess whether our derived scores effectively captured meaningful differences in sociodemographic 
and health-related characteristics thereby establishing the credibility and applicability of our scoring system 
within the context of our study population.

Genome and the polygenic risk scores (PRS)
Genotypic information was accessible for a sub sample of 2442 of the COVICAT individuals sourced from the 
GCAT  cohort32. In brief, genome-wide genotypes were generated using the Infinium Expanded Multi-Ethnic 
Genotyping Array (MEGAEx) (ILLUMINA, San Diego, California, USA), then imputed, accounting for a total 
of ~ 20 M unique autosomal  variants36. All GCAT participants that passed strict quality control were included. 
Variants with minor allele frequency (MAF) > 0.001 and imputation quality score  (R2) > 0.3 were retained for 
subsequent analysis. All included subjects were Iberian from White-Western European ancestry based on self-
reported data and PCs  analysis36. Genotypes are available at EGA (European Genome-phenome Archive; https:// 
ega- archi ve. org/) under accession ID EGAD00010001664.

In order to improve the robustness of the approach we considered different dimensions of depression by draw-
ing on multiple sources of depression-related phenotypic data, including different measurement methods and 
indicators potentially capturing a more comprehensive understanding of the genetic condition and enhancing the 
predictive power of the PRS instruments, from symptoms to clinical diagnosis. These include lifetime depression 
(MHQ), quantitative endorsement (up to five) depression phenotypes (‘help-seeking’, ‘self-reported depression’, 
‘antidepressant usage’, ‘depression37, or ‘hospital (ICD-10)’38; broad  depression39, and several depression measures 
ranging from minimal phenotyping (using data from questionnaires) to EHR definition of depression (using 
ICD-10 codes) or strictly defined depression (using an online mental health follow-up40). Polygenic risk scores 
for all phenotypic measures for  depression38–40 were derived using either the GWAS summary statistic data, or 
the weight from the PGS  catalogue41 (Supplementary Table S4). Posterior SNP effect sizes for those phenotypic 
measures that were derived using GWAS summary statistic data were computed using  PRScs42. Weights from the 
PGS catalogue were processed by removing strand ambiguous SNPs and discordant SNP alleles. Then, the cumu-
lative score for 14 polygenic risk scores for each genotyped individual were computed using PLINK1.943. Raw 
PRS were converted into standardized z-scores to compare odds ratios across analyses. Because of the overlapping 
dimensions of depression used, and to help the interpretation of the results, pairwise correlations between the 
PRS of different depression measures and data sources were assessed by computing a Pearson correlation matrix 
with hierarchical clustering using Ward’s method between all the phenotypic measures (Supplementary Fig. S2).

Statistical analysis
We conduct regression analysis to investigate the association between various factors and different thresholds 
of depression (mild, moderate, and severe). To examine the association between exposures and the outcome, 
we used binary variables based on the HADS-D threshold; mild depression (HADS-D ≥ 5), moderate depres-
sion (HADS-D ≥ 8), and severe depression (HADS-D ≥ 11). Backwards feature selection method with logistic 
regression, with bootstrapping, was done to identify the best features associated with each depression threshold. 
The selection process was repeated through bootstrap resampling with 1000 iterations to ensure robustness. 
Multinomial regression analysis were then conducted for each level of severity with the outcome categorized 
as follows: HADS-D: < 5 indicating no depression, 5–7 indicating mild depression, 8–10 indicating moder-
ate depression, and ≥ 11 indicating severe depression and using the no depression category as the reference. 
Prediction accuracy was assessed using Nagelkerke’s pseudo  R2. Given the well-documented sex differences in 
depressive symptoms all analyses were adjusted for sex and  age44. Similarly, education level was used as a proxy 
for socioeconomic status and included as a covariate, given its association with depressive  symptoms45, as well 
the first ten principal components (PC). All models presented here includes all individuals with environmental 
and genetic data (n = 2442).

In addition to multinomial analysis, we first computed the main effect of genetic factors (genome model) 
and environmental exposures (exposome model) by analyzing the association between the Polygenic Risk Score 
(PRS) and the Personal Environment Risk Score (PERS) measures  (PERSTotal,  PERSSoc,  PERSLife, and  PERSEnv) 
and depression outcomes (mild, moderate, severe). These models consider the genetic contribution and envi-
ronmental factors to depression individually. All models were adjusted for covariates to depression outcomes. 
Secondly, the multinomial analysis was conducted for the G + E (genome plus exposome) analysis. As briefed 
before, we employed a stepwise regression approach with backward elimination based on the Akaike informa-
tion Criterion (AIC). Initially, we fitted a model including all covariates, genetic, and environmental factors and 

https://ega-archive.org/
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then iteratively removed variables that did not contribute significantly to the model, as determined by the AIC. 
This process was repeated with 1000 bootstraps with resampling to enhance the robustness of the G + E model, 
and the final model was constructed with the variables that were retained in 60% of the bootstraps. The retained 
factors resulting from the bootstrapped models were subsequently analysed to provide insights into the stability 
and reliability of the G + E associations using a multinomial regression to assess the effects of these variables 
across all three depression thresholds. Third, with the retained PRS and PERS in the second step, we computed 
a multiplicative interaction model to explore potential interaction effects between genetic and environmental 
factors. This model, known as GxE (genome by exposome), evaluates whether the combined effects of genetic and 
environmental factors on depression outcomes are greater or different from the sum of their individual effects. We 
applied a False Discovery Rate (FDR) correction to the main effects results to control for the possibility of false 
positive results due to multiple comparisons in a comprehensive way. Significance was stated at FDR-adjusted p 
value of 0.05. Forest plots were generated using the forestplot Python package (version 0.3.3).

Ethics approval and consent to participate
All research was carried out in accordance with relevant national and European guidelines and regulations. The 
GCAT study was carried out using anonymized data provided by the Catalan Agency for Quality and Health 
Assessment, within the framework of the PADRIS Program. The participants provided informed written consent. 
The research conformed to the principles of the Helsinki Declaration.

Results
We present the results of the analyses in the following sections. Firstly, we provide a detailed description of the 
sociodemographic characteristics, the distribution of HADS-D subscale and the exposome risks in our sample. 
Secondly, we present the results of the regression models examining the main effect of each exposome score 
 (PERSTotal,  PERSSoc,  PERSLife and  PERSEnv) on depression outcomes (mild, moderate, severe). We introduce here 
the novelty of grouping environmental factors on cumulative scores; poly-environmental risk scores. Thirdly, we 
show results of the regression models exploring the main effect of genetic effects. Here we introduce the explora-
tory use of PRS issued from complementary definitions of depression. Fourth, we investigate Genome-exposome 
addition (G + E) and Genome-exposome interaction (G × E) models.

Sociodemographic characteristics and HADS‑D scores
The mean age of the participants in the COVICAT study was 54.6 years (SD = 7.1), 59.4% of them were female. 
Almost half of the sample (46.9%) had a “higher level of education” and 10.3% had a “pre-pandemic mental health 
diagnosis”. Two subsamples used in the analysis (i.e. Subsample A, participants with genetic data, and Subsample 
 B, participants with confirmed pre-pandemic mental disorder) showed differences in age-gender distribution as 
well as in educational level compared to the whole sample (Tables 1 and 2). Subsample A, was older with a lower 
education level, a higher proportion of males, a lower prevalence of pre-pandemic mental health diagnosis and 
similar levels of depression. Subsample B, was older with a lower education level and a higher proportion of 
females. All these differences were accounted for in the following analysis.

In the total samples, regarding depression outcomes, there were 3224 (34.98%) participants who scored 
HADS-D ≥ 5 (mild depression), 1496 (16.23%) participants who scored HADS-D ≥ 8 (moderate depression) and 
550 (5.97%) participants who scored HADS-D ≥ 11 (severe depression). Women presented higher depression 

Table 1.  Distribution of sociodemographic characteristics and depression (HADS-D) categories in the whole 
sample and subsample A (sample with genetic data).

Total sample Subsample A

N = 9218 N = 2442

N (%) N (%)

Current age (years); mean (SD) 54.6 (7.1) 55.5 (6.7)

Gender; female 5477 (59.4) 1353 (55.4)

Education level

 Primary or lower 998 (10.8) 348 (14.3)

 Secondary 3900 (42.3) 1143 (46.8)

 Graduate or above 4320 (46.9) 951 (38.9)

Pre-pandemic mental health score

 0 (no diagnosis) 6729 (73) 1691 (69.2)

 1 (possible) 1536 (16.7) 469 (19.2)

 2 (confirmed) 953 (10.3) 282 (11.5)

Depression (HADS-D)

 Mild depression (HADS-D ≥ 5) 3224 (34.9) 860 (35.2)

 Moderate depression (HADS-D ≥ 8) 1496 (16.2) 397 (16.3)

 Severe depression (HADS-D ≥ 11) 550 (5.9) 160 (6.6)
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scores compared with men. Participants with confirmed pre-pandemic mental disorders showed higher depres-
sion scores. Distribution of Depression Subscale HADS-D scores are presented in Fig. 1.

Exposome factors in the full sample
A relevant proportion of the sample reported exposure to known environmental risk factors during the lockdown. 
For example, loneliness was identified in 75.3% of participants, 9.5% reported interpersonal conflicts in the 
household, 7.3% lost their jobs after the first outbreak of the pandemic, 8.4% struggled to pay for rent or food, 
and over 10% had no access to outdoor spaces during the lockdown. A chronic disease was reported by 32.3% 
of the participants and 4.9% had a positive COVID-19 diagnosis.

Tetrachoric correlation between individual variables revealed imperfect correlations within environmental 
and socioeconomic variables (Supplementary Fig. S1), with only a few absolute pairwise correlations r > 0.5; 
Living alone-caregiving, NDVI-urbanization, NO2-urbanization. Ward’s clustering analysis seemed to support 
the existence of three distinct categories or clusters, particularly for the cumulative scores related to  PERSSoc and 
 PERSEnv. The variable “access to outdoor spaces” was clustered with other environmental risks factors included, 
possibly due to the high correlation with natural views, but for coherence with other behavioural factors we 
decided to group this variable with other lifestyle/behavioural factors in the  PERSLife. Living alone and Car-
egiving showed a strong negative pairwise correlation and were grouped in a separate cluster, but due to the 
high correlation they exhibit with other socioeconomic factors, they were considered as such. Finally, variables 
related to health (i.e. Chronic disease and COVID-19) poorly correlated with most risk factors, were included 
in  PERSEnv, based on evidence reported by our group correlating COVID-19 and air  pollutants31. The mean 
score for estimated PERS were;  PERSSoc = 1.01 (0.97 SD),  PERSLife = 1.44 (1.04 SD),  PERSEnv = 1.92 (1.3 SD), and 
 PERSTotal = 4.37 (1.92 SD).

We assumed equal weights for the ease calculation, even if it does not fully capture the variability in the 
impact of individual factors. Reliability of PERS was confirmed by a known group validity test. The known group 
validity tests yielded statistically significant associations, capturing meaningful variations in education levels, 
self-perceived health, and deprivation index within the study cohort. Results support the robustness of our 
composite scores and their further use as instrumental tools. Complete results from the known group validity 
test are presented in Supplementary Table S5.

Table 2.  Distribution of sociodemographic characteristics in the whole sample and subsample B (sample pre-
pandemic mental health diagnosis).

Total sample Subsample B

N = 9218 N = 953

N (%) N (%)

Current age (years); mean (SD) 54.6 (7.1) 55.9 (6.8)

Gender; female 5477 (59.4) 695 (72.9)

Education level

 Primary or lower 998 (10.8) 145 (15.2)

 Secondary 3900 (42.3) 463 (48.6)

 Graduate or above 4320 (46.9) 345 (36.2)

Figure 1.  Distribution of total scores of the Depression Subscale HADS-D for (a) the total sample, by (b) 
gender, and by (c) pre-pandemic mental health diagnosis. HADS-D threshold for levels of depression are 
depicted with dashed red lines. Similar distribution is observed by gender, with higher HADS-D scores in 
females than males. Higher HADS-D scores are observed in the participants with previous diagnoses of 
depression or anxiety.
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Non‑genetic contribution to depression outcomes
The distribution of depression scores in relation to cumulative PERS at the three considered outcomes (mild, 
moderate and severe depression) show a consistent increase of depression scores with higher PERS scores and 
this suggests that higher exposure to environmental stressors may contribute to increased depressive symptoms. 
Furthermore, there’s a heightened likelihood of individuals experiencing depression across all severity levels as 
their cumulative exposure to environmental stressors escalates, suggesting that individuals exposed to higher 
levels of environmental stressors are more likely to experience depressive symptoms, regardless of the level of 
severity. This trend is consistent for combined score  (PERSTotal) and when we examined each individual domain 
 (PERSSoc,  PERSLife, and  PERSEnv). See Fig. 2 and Supplementary Fig. S3 respectively.

Regression models incorporating exposome measures provided a significantly better fit compared to a null 
model that only included covariates. The significant associations observed for all PERS with depression for mild, 
moderate and severe forms (Supplementary Table S6), underscore the potential impact of social, lifestyle, and 
broader environmental influences on depression health outcomes. Overall, all environmental cumulative scores 
are associated with a higher depression risk, where the inclusive  PERSTotal (OR 1.52, 95% CI 1.43–1.63) explained 
the largest proportion of variance associated with depression regardless of the level of severity (mild:  R2 = 0.086; 
moderate:  R2 = 0.120; severe:  R2 = 0.140).  PERSTotal show the highest effect size for severe depression (OR 1.61, 
95% CI 1.47–1.77), but the most significant was for moderate depression (OR 1.52, 95% CI 1.43–1.63). Regarding 
partitioned cumulative scores,  PERSSoc showed the largest effect on all assessed levels of severity (mild: OR 1.73, 
95% CI 1.57–1.91; moderate: OR 1.87, 95% CI = 1.66–2.10; severe: OR 1.99, 95% CI 1.68–2.36). For moderate 
depression the social domain is the one that shows the highest effect  PERSSoc (OR 1.87, 95% CI 1.66–2.10), as the 
estimated effect for the lifestyle and behaviour domain  (PERSLife; OR 1.63, 95% CI 1.46–1.81) and environmental 
 (PERSEnv; OR 1.36, 95% CI 1.22–1.53) show lower effects. Detailed information for all the models, including the 
mild and severe depression forms are presented in Supplementary Table S6.

Genetic contribution to depression outcomes
Polygenic Risk Scores (PRS) associated with moderate depression are defined as HADS-D score of 8 or higher. 
Two out of all the assessed PRS were found to have a statistically significant increased risk of moderate depres-
sion:  PRSB (broad depression), (OR 1.18, 95% CI 1.05–1.33, P = 2.15 ×  10–2), a generalized measure of depres-
sion and  PRSE1 (endorsed measures of depression (one)), (OR 1.17, 95% CI 1.04–1.32, P = 2.97 ×  10–2), based on 
quantitative definitions derived from endorsed measures of depression. Despite the associations observed with 
moderate depression, none of the assessed PRS were associated with the mild and severe forms of depression. 
See detailed information for all PRS in Supplementary Table S6. This suggests that the genetic factors captured 

Figure 2.  PERS total distribution for each HADS-D threshold. Above, PERS is presented for each of for 
all three outcomes using HADS-D thresholds named mild depression (HADS-D ≥ 5), moderate depression 
(HADS-D≥ 8), and severe depression (HADS-D≥ 11), and below, relative prevalence for depression. Relative 
prevalence was computed as the number of individuals with a HADS-D higher than the threshold for each PERS 
Total score.
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by these PRS may specifically influence the risk of moderate depression but not the risk of developing milder or 
more severe forms of the condition.

HADS-D Scores increase relative to PRS Percentile, suggesting a positive association between genetic pre-
disposition to depression, as captured by PRS, and the severity of depressive symptoms measured by HADS-D 
scores (Fig. 3). Information for all other assessed PRS are shown in Supplementary Fig. S4.

The effect size of PRSB on HADS-D scores is consistent with reported effects on a broad depression phe-
notype, as noted in a previous study by Halldorsdottir et al.3. This suggests that the genetic factors captured 
by PRSB are indeed associated with a broad range of depressive symptoms, as previously observed. We also 
observed a moderate positive correlation (r = 0.55) between  PRSB and  PRSE1, suggesting some degree of shared 
genetic influence between the two PRS, but it also suggests that there are distinct genetic effects underlying each 
PRS capturing unique genetic variations associated with different aspects or measures of depression as has been 
previously suggested by Cai et al.40.

Additive and Interaction risk in severity level of depression
We employed a backwards feature selection method with logistic regression for each different severity level model 
(mild, moderate, and severe), retaining features that were consistently present in 60% of the iterations for each 
model (see Supplementary Fig. S5 for detailed description of retained features for all the models). Subsequently, 
we conducted a multinomial regression incorporating variables retained specifically for each model.

In addition to age, gender and education level,  PERSSoc,  PERSLife,  PERSEnv,  PRSB,  PRSE2  PRSLMDDRec and  PRSGP 
were initially retained in one of the models.

We further investigated the relationship between environmental factors and genetic risk scores and present 
results for the moderate depression model (defined as HADS-D score of 8 or higher). This model incorporated 
age, gender, retained principal components,  PERSSoc,  PERSLife,  PERSEnv, and  PRSB and  PRSLMDDRec. The overall 

Figure 3.  Above,  PRSB and  PRSE1 distributions for the moderate depression outcome. Below, relative prevalence 
by PRS percentile for all three outcomes (mild, moderate, severe). Individuals were classified according to 
the PRS percentile and the relative prevalence of individuals with a HADS-D higher than the threshold was 
computed for each percentile. LOESS curve was fitted to visualize the trend of the relative prevalence by PRS 
percentile.
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variance explained by this multinomial regression model was  R2 = 0.169.  PERSSoc,  PERSLife, and  PERSEnv scores 
were significantly associated with depression regardless of the level of severity, suggesting that various aspects of 
environmental exposures, including social, lifestyle, and broader environmental factors, play a role in influenc-
ing the risk of depression. The  PERSSoc risk increased significantly as depression severity worsened, specifically 
we observed a 1.6-fold increase in the  PERSSoc OR between mild and severe depression. Specifically, the OR for 
 PERSSoc was 1.48 (95% CI 1.31–1.66) for mild depression and increased to 2.36 (95% CI 1.97–2.83) for severe 
depression (Fig. 4). Similarly,  PERSLife, and  PERSEnv exhibited increasing associations with a 1.6-fold and 1.2-fold 

Figure 4.  Forest plot depicting the results of the multinomial regression for each depression level including the 
variables obtained from the backwards selection procedure for the HADS-D threshold for moderate depression.
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increase respectively, between mild and severe depression  (PERSLife Mild OR 1.20, 95% CI 1.09–1.34, and Severe 
OR 1.94, 95% CI 1.65–2.29;  PERSEnv Mild OR 1.17, 95% CI 1.05–1.31; Severe OR 1.40, 95% CI 1.17–1.67). 
Regarding genetic scores, we found only a significant association between  PRSB and moderate depression (OR 
1.2, 95% CI 1.03–1.40) (Fig. 4).

The multinomial regression analysis results incorporating variables retained from the backwards feature 
selection method for mild and severe level (mild depression, severe depression model) and the analysis with all 
retained variables combined (any depression model) is presented in Supplementary Figs. S6–S8. Detailed results 
for each multinomial model assessed is presented in Supplementary Table S7.

Based on these results, we further explored a possible multiplicative interaction effect between the differ-
ent PERS and  PRSB. We observed that only the interaction between  PERSEnv and the PRS attained statistical 
significance; specifically for mild and moderate depression. Strikingly, the odds ratios for these interactions 
were consistently smaller than 1, OR 0.87, 95% CI 0.77–0.98, OR 0.84, 95% CI 0.72–0.99, and OR 0.92, 95% CI 
0.77–1.12 for mild, moderate, and severe depression, respectively, showing a potential mitigating effect (Sup-
plementary Table S8) and should be interpreted with caution. Sensitivity analysis, in which one variable used 
to compute  PERSEnv was omitted at a time, identified  NO2 as a key factor, the interaction not being significant 
when  NO2 was removed from the score. This suggests that  NO2 may play a driving role in this interaction (Sup-
plementary Table S9).

Finally, to understand the impact of previously diagnosed mental disorders, we distinguish between indi-
viduals with and without pre-pandemic mental health conditions, disaggregating by absence or presence of 
pre-pandemic mental health conditions. The study found significant positive associations for  PERSSoc,  PERSLife, 
and  PERSEnv scores across all levels of depression severity, regardless of individuals’ pre-pandemic mental health 
status, while polygenic risk scores showed no significant associations, only in the absence of a pre-pandemic men-
tal health diagnosis there was a trend observed for  PRSB (Supplementary Table S10). This suggests that environ-
mental factors such as social interactions, lifestyle choices, and broader environmental influences continue to play 
a significant role in influencing mental health outcomes, irrespective of pre-existing mental health conditions.

Discussion
Heritability estimates of depression are approximately 30–40%9. This leaves ample room for the contribution 
of non-genetic factors to inter-individual variability of the phenotype. In a single cohort, during the COVID-
19 lockdowns, we comprehensively analyzed environmental factors that collectively influence susceptibility 
to depression, focusing on understanding the impact of the entire  exposome46. Our approach considered the 
combined effects of both genetic and environmental factors, and explored the use of cumulative scores of envi-
ronmental exposures and genetic susceptibility that jointly impact depression.

We identified significant positive associations between non-genetic risk factors and depression levels with a 
considerable impact of environmental factors on mental health outcomes. After accounting for age, about 16.9% 
of the differences in depression levels among the individuals in our sample can be explained by  PERSSoc,  PERSLife, 
 PERSEnv, and  PRSB. In addition, for all three domains, HADS-D Scores increase relative to PERS percentile, 
suggesting a cumulative effect of multiple environmental stressors on depression risk, and the importance of 
considering the combined impact.

Specifically,  PERSSoc and  PERSLife were each associated with a 1.6-fold increase in risk from mild to severe 
depression, while  PERSEnv showed a 1.2-fold increase in risk across severity levels. Notably,  PERSSoc, reflecting 
social and household-related factors, and  PERSLife, emerged as pivotal determinants, explaining the major portion 
of the variance in depression levels. In contrast, wider environmental and health-related factors  (PERSEnv) account 
for a relatively smaller impact on variance. This underscores the critical role of interpersonal relationships, social 
networks, and personal well-being in shaping mental health outcomes. Social isolation and social satisfaction 
play a mediating role in the effect of interpersonal  relationships47 which increases susceptibility to negative emo-
tions such as depression and anxiety, moreover stress exposure limits the development of healthy interpersonal 
 relationships48. The remaining variability in depression levels may be due to other factors not included in our 
model or random variation. For example, sensitive time windows may model the outcome, as suggested by the 
strong increase in the incidence of mental health problems in adolescents after the COVID-19  pandemic49.

In our study genetics explained a very low proportion of the depression and only  PRSB (Broad depression), 
a generalized measure of depression, was associated with depression, with higher impact on moderate levels of 
depression compared to milder or more severe forms. These loci may be less specific to the biological underpin-
nings of clinical depression, while closer to neurobiological mechanisms of symptom onset through susceptibility 
to exposure to non-genetic factors. The effect size reported here for  PRSB (OR 1.2, 95% CI 1.03–1.40) is consistent 
with reported effects on a broad depression  phenotype3, suggesting that these genetic factors captured are indeed 
associated with a broad range of depressive symptoms. This suggests that the depression phenotype captured 
in self-reported scales is a valid measure of depression and aligns with findings of strong genetic correlation 
between both  measures39,50. It’s possible that other genetic factors play a more prominent role in the develop-
ment, or exacerbation of mild and severe depression, indeed, our analyses indicate that broad definitions of 
depression showed moderate correlations with more stringent measures of Major Depression Disorder (MDD). 
However, the results also support the need for a careful consideration of the cut-off scores used to identify clini-
cally relevant individuals in a population-based sample. Substantial discrepancies have been reported between 
self-assessment using symptoms scales and diagnoses made through strict diagnostic  criteria40. The cut-off 
scores of the depression subscale proposed for the HADS-D varied between 5 and 11, where a cut-off score of 
11 or higher is considered a strong indicator of clinical depression according to established  guidelines33. Because 
stringent definitions of PRS show larger  heritability40, we expected a stronger association between  PRSLMDDRec 
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(Lifetime Major Depressive Disorder (with recurrence)) and higher severity of depression. This was not the 
case. It is possible that the relatively smaller number of individuals with higher severity limited statistical power.

In our model, we observed broad depression  (PRSB) and environmental and health dimension stressors 
 (PERSEnv), shown an interaction with a mitigating effects for mild and moderate depression. From  PERSEnv, air 
pollution  (NO2) was identified as the key factor, playing a driving role in this interaction. However, these results 
are counterintuitive considering previous observations. There is emerging evidence of associations between poor 
air quality and poor mental health, as well as specific mental  disorders15. Furthermore, pre-existing long-term 
conditions appear to deteriorate, requiring more  healthcare51. We also observed that more severe COVID-19 
disease was associated with mental health  disorders29 and exposure to air  pollutants31. Overall, this result sug-
gest that complex non-linear relationships may exist, as well unmeasured variables or uncontrolled confounders 
resulting in misleading conclusions.

Globally, the prevalence of depression has experienced a significant increase after the COVID-19  pandemic52. 
We previously identified that 5% of the participants in the COVICAT cohort with no pre-pandemic history of 
mental health disorder presented clinically relevant depression two months after the first  lockdown29. Here we 
observed that the strong association of poly-environmental scores was independent of pre-existing mental health 
disorders. Notably, while the statement holds true for cumulative PERS, certain factors seem to individually 
exacerbate when there are existing mental health conditions, as reported in Goldberg et al.29 where Living alone 
was identified as risk factor for severe depression only for those with pre-pandemic mental health diagnoses, 
however Household interpersonal conflicts and Financial instability are predictors of severity in people without 
pre-pandemic mental health diagnosis.

Together, all this evidence challenge a widespread perception that more severe symptoms and/or more strictly 
defined symptoms of depression are closely related to genetic susceptibility, while social, lifestyle or environ-
mental factors mainly model moderate or non-specific  symptomatology40,53. Our results show that non-genetic 
exposures are strong and significant predictors of severe depression and their capacity to shape the mental health 
of populations should not be underestimated.

Our study has several strengths that contribute to the robustness of the findings, the most relevant being high-
quality individual-level data and the low proportion of missing data, the large range of depression phenotypes 
assessed across phenotypic presentations and the thorough examination of environmental stressors. Further-
more, several important limitations should be considered when interpreting the findings of the study. While the 
assumption of potential causality is reasonable since exposures precede the outcome, caution is warranted due to 
the possibility of bidirectional relationships between variables. The presence of healthy  bias54 and limited repre-
sentation of  ancestry55 in the study sample may affect the generalizability of the findings to broader populations, 
however, this does not invalidate the relationships found between exposures and depression outcomes. Finally, 
the limited sample size may affect the statistical power, particularly in interaction analyses. Replication studies 
with larger sample sizes are needed to validate the observed interactions and enhance confidence in the findings.

The findings of the study indeed provide valuable insights into addressing multiple stressors simultaneously 
to mitigate depression risk and promote  resilience56. However, it is crucial to interpret cumulative scores and 
interaction effects cautiously, considering unaccounted factors and potential confounding variables that may 
influence the observed associations.

Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request. Genotypes are available at EGA (European Genome-phenome Archive; https:// 
ega- archi ve. org/) under accession ID EGAD00010001664.
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